Diketahui garis y 3x 4 ditranslasikan oleh maka persamaan garis bayangannya adalah

Untuk men-translasi-kan suatu garis terhadap titik tertentu, caranya akan diberikan dibawah dan hanya menggunakan x y saja. Maksudnya?? Biar tidak bingung, simak saja penjelasan dibawah ini..

Soal :
1. Garis y = 2x + 3 ditranslasikan terhadap T (2,3). Bagaimanakan bayangan garis tersebut??

Berikut adalah langkah men-translasi-kan suatu garis. Menentukan titik asal
Nah, inilah langkah awalnya, kita harus menentukan titik asal yang ada pada persamaan garis tersebut.
Titik asal yang dipakai adalah (x,y)
Selalu gunakan titik asal ini dan tidak perlu menggunakan suatu titik semisal (2,1) atau lainnya. Cukup gunakan (x,y). Menentukan persamaan
Mari kita perhatikan perubahan karena translasinya.

Proses translasinya bisa digambarkan seperti itu.
  • Titik (x,y) ditranslasikan terhadap T(2,3) sehingga bayangannya menjadi (x',y')

Begitulah kurang lebihnya.

Sehingga bayangannya bisa ditentukan :

Akhirnya, kitapun memperoleh dua buah persamaan, yaitu :
  • x' = x + 2 ...①
  • y' = y + 3 ...②
Mengubah persamaan dalam bentuk x dan y
Sekarang kita ubah persamaan ① dan ② ke dalam bentuk x atau y. x' = x + 2
  • pindahkan + 2 ke ruas kiri menjadi -2


y' = y + 3

  • pindahkan +3 ke ruas kiri menjadi -3

Memasukkan nilai x dan y ke dalam persamaan asli (awal)

Persamaan garis aslinya adalah y = 2x + 3. Sekarang ganti x dan y menggunakan hasil perhitungan dari :

  • x = x' - 2 ...③
  • y = y' - 3 ...④

  • pindahkan -3 ke ruas kanan menjadi +3

  • Sekarang y' dan x' bisa dibuat dalam bentuk y dan x
  • Aksen ( ' ) bisa dihilangkan

Jadi, inilah bayangan dari garis y = 2x + 3 ketika ditranslasikan terhadap T(2,3), yaitu y = 2x + 2



Hasil akhir y = 2x + 2 bisa ditulis dalam berbagai bentuk, misalnya. y = 2x + 2

  • pindahkan 2x ke ruas kiri menjadi -2x


Atau : y = 2x + 2

  • pindahkan y ke ruas kanan menjadi -y
  • pindahkan  +2 ke ruas kiri menjadi -2


Kemudian, bisa juga : y = 2x + 2

  • y dipindah ke ruas kanan menjadi -y

Itulah variasi jawaban yang mungkin ditemui dalam soal pilihan ganda. Silahkan tukar-tukar posisnya demi mendapatkan jawaban yang sesuai pilihan.


Soal :
2. Garis 2x - y - 4 = 0 ditranslasikan terhadap T (1,-2). Bagaimanakah bayangan garis tersebut??

Untuk menentukan bayangan dari suatu persamaan garis, ingat titik asalnya selalu gunakan (x,y). Menentukan persamaan
Sehingga bayangannya adalah :

Hasilnya ada dua buah persamaan, yaitu :
  • x' = x + 1 ...①
  • y' = y - 2 ...②
Mengubah persamaan dalam bentuk x dan y
Sekarang kita ubah persamaan ① dan ② ke dalam bentuk x atau y. x' = x + 1
  • pindahkan +1 ke ruas kiri menjadi -1


y' = y - 2

  • pindahkan -2 ke ruas kiri menjadi +2

Memasukkan nilai x dan y ke dalam persamaan asli (awal)

Sekarang masukkan nilai x dan y ke persamaan awalnya

  • x = x' - 1 ...③
  • y = y' + 2 ...④

Persamaan garis awal (pada soal) adalah 2x - y - 4 = 0

Inilah hasil bayangan dari 2x - y - 4 jika ditranslasikan terhadap T(1,-2).

Mentok ngerjain soal? Foto aja pake aplikasi CoLearn. Anti ribet ✅Cobain, yuk!

Teks video

jika melihat hal seperti ini maka kita tahu bahwa jika kita mentransaksikan suatu titik x koma y dengan ditranslasi oleh matriks A 4 Min 5 maka akan kita dapatkan titik X aksen y aksen di mana titik X aksen adalah x ditambah 4 tinggal kita dapat x = x aksen dikurang 4 lalu untuk y aksen adalah didapat dari y dikurang 5 maka kita dapat y = y aksen ditambah 5 Nah dari persamaan yang kita dapat kita masukkan ke dalam fungsi atau persamaan y nya tinggal kita ubah Y nya menjadi aksen ditambah 5 = 4 * xminus 4 ditambah 7 sehingga kita dapat y aksen ditambah 5 = 4 x aksen dikurang 16 + 7 hasilnya adalah y aksen = 4 x aksen dikurang 14 ini akan sama dengan Y = 4 X min 14 maka jawabannya adalah D sekian penjelasannya sampai bertemu di soal selanjutnya

Diketahui:

Persamaan garis  ditranslasikan oleh matriks .

Bayangan yang terbentuk melalui titik .

Ditanya:

Nilai n?

Jawab:

Menentukan titik pembentuk garis misal titik A dan titik B

Jika , maka

 

Jika , maka

 

Titik  

Menentukan nilai n, persamaan translasi

 

Jadi, nilai .